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Project Report, November 2010 
Dynamic Spectrum Sharing with Limited Network State 

Information 
ARO Contract Number W911NF-06-1-0339 

 

1 Project Overview and Goals 
The performance of a wireless network in general depends on the amount of Network 
State Information (NSI) available to nodes in the network. NSI includes Channel State 
Information (CSI), along with information about quality of service requests, such as 
throughput and delay.  When available at transmitters, this NSI enables efficient 
allocation of network resources, such as power and bandwidth, along with effective 
interference management. Both are necessary to achieve high spectral efficiencies, given 
a limited supply of bandwidth. However, learning and exchanging NSI requires the 
expenditure of network resources. Hence there is generally a tradeoff between this 
overhead cost and the associated benefits.  Effectively managing this trade-off is critical 
for the design of efficient tactical networks.  Major goals of this project have been: (1) 
Design and evaluate distributed algorithms for resource optimization and interference 
management in peer-to-peer networks with limited exchange of NSI and (2) Characterize 
the associated tradeoff between overhead costs and associated benefits with multiple 
Degrees of Freedom (DoFs) in time, frequency, and space.  

2 Distributed Interference Compensation 
Tactical networks cannot assume the presence of centralized infrastructure and so must 
rely on peer-to-peer communication. Interference management in a peer-to-peer wireless 
network is challenging, since the nodes may have only local information about channel 
and interference conditions. Without exchanging NSI, a transmitter therefore may not be 
aware of interference it causes to neighboring nodes. This can lead to a substantial 
degradation in network performance. We have been studying distributed interference 
management techniques with the following properties: 

1. Each transmitter optimizes its own resources (e.g., power, spatial beams) based on 
the information it receives from nearby nodes (i.e., it does not have global 
knowledge of the network topology and channel gains). 

2. The nodes exchange limited information about channel and interference 
conditions. 

3. These techniques attempt to maximize a sum utility objective, assuming each user 
is assigned a utility function, which depends on received Signal-to-Interference 
Plus Noise Ratio (SINR). 

 
This project has focused on peer-to-peer networks with multi-antenna nodes. The goal is 
to optimize jointly the powers and spatial beams across users. The additional spatial DoFs 
allow a transmitter to reduce interference to a neighboring receiver by steering the beam 
away from that receiver. This centralized optimization problem (e.g., maximize the sum 
utility over all powers and beams) is typically not convex, which makes it challenging.  
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2.1 Interference Pricing for Power and Beam Updates 
Building on our previous work on distributed power control for single-antenna links [1], 
we have studied the use of distributed interference pricing for adjusting powers and 
beams. An interference price at a particular receiver is associated with a particular spatial 
mode, or beam, and is the marginal decrease in utility caused by a marginal increase in 
interference along that beam. (Interference prices can also be applied to different sub-
channels.)  This leads to an iterative algorithm in which receivers announce interference 
prices given a set of transmitter beams, and transmitters update beams and/or powers 
given a set of announced prices. 
 
In [2] we have studied distributed interference pricing for a peer-to-peer network with 
Multi-Input/Single-Output (MISO) links (i.e., multiple transmit antennas, and a single 
receive antenna at each node), and in [3] we study beamforming for MIMO links. In [4] 
we have studied joint optimization of powers and pre-coder matrices (representing 
multiple beams) for MIMO channels. Distributed optimization of the pre-coding matrices 
with MIMO links becomes especially difficult, since the number of beams for each link 
(equivalently, the rank of the pre-coding matrix) must be jointly optimized with the 
powers and beam directions. (They are all inter-dependent.) We have proposed some 
heuristic methods in [4], which exchange interference prices for each beam. Numerical 
results indicate that these methods give near-optimal performance with two users. 
Furthermore, the results in [3] indicate that substantial performance can be obtained with 
limited exchange of interference prices.  An overview of our work on interference pricing 
has appeared in IEEE Signal Processing Magazine [5]. 

2.2 MSE  Beamforming and Interference Alignment 
With more than two users the optimal pre-coding matrices (sets of beams) at high SNRs 
must achieve interference alignment. That is, interfering beams must be aligned at each 
receiver so that the received interference covariance matrix is rank-deficient. As an 
example, interference alignment allows three users to transmit without interference with 
2x2 channels (i.e., two antennas at each transmitter and receiver). Numerical examples 
indicate that interference pricing does not generally achieve alignment of spatial beams. 
The reason for this is that the sum rate objective often has a very sharp peak at an aligned 
solution, making it difficult to reach by gradient-based approaches (including interference 
pricing). This is illustrated in the following figure, which is a contour plot of sum rate as 
a function of beamformer weights. (As the sum rate increases the color transition from 
dark blue to yellow to red.) This is for a network of three users with 2x2 channels, and 
the contours are shown in a two-dimensional subspace of the beamformer weights (x- and 
y-axes) that contain the optimal aligned solution (dark red spot in the upper right).  The 
two black curves show trajectories of a gradient algorithm in this subspace starting from 
two different initial points. In both cases the algorithm converges to a local optimum, 
which is not an aligned solution. 
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Fig. 1. Contour plot of sum rate as a function of beamformer coefficients. 
 
We have instead proposed a distributed beamforming algorithm using a weighted sum 
Minimum Mean Squared Error (MMSE) criterion. Specifically, a particular beam is 

selected to minimize  



 

k
kkk bbEw

2~
where bk is the transmitted symbol, kb

~
 is the 

estimated symbol at the output of the receiver filter, wk is the priority weight assigned to 
user k, and E[.] denotes expectation [6].1 Numerical examples have shown that this 
method typically achieves (essentially) optimal performance over a wide range of SNRs. 
It therefore achieves alignment at high SNRs.  Furthermore, the user weights can be 
adapted to achieve different points in the rate region. This leads to a two-stage algorithm 
in which the beams are selected in an inner loop to minimize the sum MSE and the 
priority weights are adjusted in the outer loop to maximize the sum utility objective. 
Numerical results show that this method achieves different points in the rate region 
accounting for the possibility of alignment. 
 
This work (in addition to [4], [5]) is joint work with members of the Signal Processing 
Institute at the Technical University of Munich. One of the PIs (MH) has visited TUM 
with additional funding from the Humboldt Foundation, and we have hosted M.S. and 
Ph.D. candidates from TUM in our lab for short-term visits ranging from 3 to 6 months. 
One of the PIs (RB) has also leveraged funding from the DARPA IT-MANET program to 
work on these problems. 

                                                 
1 The corresponding update is similar in form to the `Max-SINR’ approach proposed in [7].  Advantages of 
the weighted sum-MSE approach are that it has provable convergence and can achieve different points in 
the rate region.  
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2.3 Convergence 
A fundamental issue with any iterative scheme, such as the ones studied here, is whether 
or not it converges. We have shown in prior work [1] that for a particular class of utility 
functions and with single-antenna nodes, the sum utility objective converges to the global 
optimum. However, a shortcoming of this result is that the class of utility functions does 
not include the rate utility (i.e., log(1+SINR)). More recently, we have shown that if all 
interference prices are current, meaning that prices are immediately updated and 
announced after every power and beam update, then the pricing algorithm always 
converges for a larger class of utility functions, which includes the rate utility [8]. 
However, depending on the utility functions, it may converge to a local optimum, which 
is not globally optimal. (This applies to the rate utility, since the problem is not convex, 
and therefore does not have a unique global optimum.) In contrast to the result in [1], 
which relies on the application of super-modular game theory, this more recent 
convergence result is based on a convexity argument. (Note, however, that it does not 
include the result in [1], since there the prices do not have to be current.) The 
convergence argument in [8] has also been extended to the combined MSE adaptation of 
beams with user weights described in [6]. 

2.4 Performance Analysis 
Here we consider a MIMO interference network with K interfering transmitter-receiver 
pairs and N antennas per node (transmitter or receiver), where each transmitter transmits 
a single beam. If the channels are independent, random with i.i.d. elements, then it has 
been shown that at high SNRs the maximum slope of the sum rate versus SNR is 2N-1. 
(This implies that 2N-1 users can transmit a single beam with zero interference.) For a 
given realization of channels there are many sets of beamformers that achieve this 

maximum slope. (An upper bound on the number of such sets grows as 2cN2
 where c is a 

constant.) However, the sum rate asymptote for each of these sets generally has a 
different y-axis intercept (or offset). This is illustrated in the following figure, which 
shows a sketch of sum rate versus SNR. (The high SNR slope is s, and the offset is r.) 
 

 
Fig. 2: Illustration of high SNR slope and offset. 
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For high enough SNRs, the sum rate is maximized by a set of beamformers that achieves 
the maximum high SNR slope. However, at finite SNRs this may not be true. In 
particular, a strategy achieving a slope of only N might allow for a significantly higher 
offset than a strategy achieving the maximum slope. Assuming that the number of fully 
aligned beamformer sets that achieve a slope of 2N − 1 is finite for a given channel 
realization, we approximate the average offset when the best out of a large number L of 
these sets is selected. We also derive a simple large system approximation for the sum 
rate of a successive beam allocation scheme when K = N. We show that both 
approximations accurately predict simulated results for moderate system dimensions and 
characterize the large-system asymptotes for different relationships between L and N. In 
this way we can characterize how large the SNR should be so that an aligned solution 
corresponding to slope 2N-1 (relatively to difficult to compute) is likely to perform better 
than a solution with slope N (relatively easy to compute). This work is reported in [9]. 

2.5 Incremental SNR Algorithm 
We again consider a network with K users and N antennas per node. Because the number 
of aligned solutions with K=2N-1 can be quite large, and because the aligned solutions 
are independent of the direct channels (i.e., they need only satisfy the zero interference 
condition, which depends on the cross-channels), the performance of a randomly chosen 
aligned solution can be relatively poor. At high SNRs we therefore wish to find an 
aligned (zero-interference) solution where the beams are as closely aligned as possible 
with the direct channel gains. We also observe that at low SNRs the optimal 
beamformers are the principal eigenvectors of the direct channels. We have therefore 
proposed an incremental SNR method for adjusting the beamformers in which we 
initialize the SNR at zero, and set the beamformers as the principal eigenvectors. We then 
increment the SNR and adjust the beamformers to maximize the sum rate according to 
gradient updates. We repeat this until the SNR is incremented to the desired value. In this 
way the beamformers stay close to the principal eigenvectors as the SNR increases.  
 
Numerical results in [10] show that this performs better on average than the sum-MMSE 
and Max-SINR approaches described previously, the gain becoming significant at high 
SNRs. This indicates that there are indeed many aligned solutions in the vicinity of the 
principle eigenvectors, making it quite difficult to find the globally optimal solution. 
 

2.6 Adaptive Beamforming with Bi-Directional Training 
The preceding discussion has assumed that the transmitters and receivers know all 
channel gains in the network. In practice these are initially unknown, so that adaptive 
methods are needed for determining the beamformers and receiver filters.  In [11] we 
propose an adaptive version of the Max-SINR algorithm for a time-division duplex 
system. This algorithm uses a period of bi-directional training followed by a block of data 
transmission. Training in the forward direction is sent using the current beamformers 
and used to adapt the receive filters. Training in the reverse direction is sent using the 
current receive filters as beamformers and is used to adapt the transmit beamformers. The 
adaptation of both the receive filters and beamformers is done using a least squares 
objective for the current block. This is in contrast to bi-directional training for channel 
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estimation in which the training is used to estimate channels (instead of the filters). In a 
peer-to-peer network, that would require additional exchange of the channel estimates 
among nodes to compute the beams.  
 
In order to improve the performance when the training data is limited, we also consider 
using exponentially weighted data from previous blocks. Numerical results in [11] show 
that this scheme can achieve near-optimal aligned solutions with sufficient training. The 
amount of training required to achieve near-optimality generally increases with the 
number of users. This suggests that when training overhead is taken into account, it may 
be best to restrict the number of active streams even though the maximum multiplexing 
gain is not achieved.  
 

3 Noncoherent Cooperative Broadcasting 
Cooperative transmissions by multiple transmitters in an interference network can 
mitigate interference and thereby increase the spectral efficiency. While it is optimal to 
phase-align the transmitters so that signals add coherently at the receivers, this is difficult 
to achieve in practice. In [12], we study a noncoherent cooperative transmission scheme 
with two interfering links, which does not require phase alignment. It is assumed that the 
transmitters share their messages through a dedicated link. Each transmitter then 
transmits a superposition of two codewords, one for each receiver. Each receiver decodes 
its own message, and treats the signals for the other receiver as background noise.  
 
With narrowband transmissions the achievable rate region and maximum achievable 
weighted sum rate are characterized by optimizing the power allocation at each 
transmitter between its two codewords. For a wideband (multicarrier) system, a dual 
formulation of the optimal power allocation problem across subcarriers is presented, 
which admits an efficient numerical solution. Results in [12] show that the proposed 
cooperation scheme can improve the sum rate significantly at low to moderate signal-to-
noise ratios when the cross-channel gains are comparable to the direct-channel gains. 
 

4 Limited Feedback 
Another theme of this project has been limited feedback for point-to-point and multi-user 
channels. We are interested in characterizing the increase in achievable forward rate as a 
function of the amount of available feedback. 

4.1 Resource Allocation for Broadcast OFDM 
In a broadcast channel a single transmitter transmits (possibly different) messages to a set 
of mobile receivers. We have studied limited feedback schemes for both single-user 
Orthogonal Frequency Division Multiplexing (OFDM) and broadcast Orthogonal 
Frequency Division Multiple Access (OFDMA). For both scenarios we have analyzed the 
performance (e.g., total rate summed over users) of limited feedback schemes explicitly 
taking into account the feedback overhead. Specifically, each sub-channel is assumed to 
be block Rayleigh fading, and all feedback must occur within the coherence time. Hence 
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more feedback of Channel State Information increases the achievable rate per symbol, 
but decreases the time (number of symbols) left for useful data transmission.  
 
Our more recent work has focused on limited feedback schemes for MIMO OFDMA, 
assuming multiple antennas at an access point. Limited feedback becomes more 
important in this scenario since the number of channel coefficients grows rapidly with the 
system size (users, antennas, and sub-channels). We have proposed a scheme in which 
the broadcast node sequentially receives feedback from the mobiles and decides when to 
stop receiving additional feedback and begin data transmission [13]. In this way the 
broadcast node optimizes the feedback duration. We explicitly characterize the optimal 
stopping rule at the base station, assuming each user feeds back their best beam selected 
from a beamforming codebook on groups of OFDM sub-channels. We also characterize 
the performance (sum rate) as the number of users and OFDM sub-channels both become 
large with fixed ratio. Namely, the total throughput scales linearly with the number of 
users, and as the log of the amount of feedback per coherence time. 

4.2 Evaluating Optimal Limited Feedback Methods 
In prior work we have studied the performance of limited feedback schemes for single-
user MIMO and multi-carrier channels. The feedback is used to optimize the precoder 
(beam directions) and power allocation over available DoFs. In general, finding the 
optimal quantization scheme for CSI is a vector quantization problem, and the associated 
performance with a large number of degrees of freedom (i.e., sub-channels or antennas) is 
characterized by a rate-distortion function. We have used this rate-distortion approach to 
characterize how the maximum achievable rate varies with the feedback rate for a single-
user multi-carrier channel [14]. In contrast with other limited feedback schemes, which 
designate a subset of good sub-channels in a lossless manner, optimal rate-distortion 
codes activate a small number of bad sub-channels (with small probability) in order to 
activate a larger percentage of good channels. Our results in [14] show that rate-distortion 
codes used to quantize sub-channels and beams can provide a significant increase in 
forward rate at low SNRs.  
 
We have also studied the performance of optimal vector quantizers for a MISO multi-
carrier channel with iid sub-channels [15]. Each entry in the vector quantizer is a set of 
beamformers across sub-channels. The loss in forward rate due to quantization, which is 
the distortion criterion, can be computed as a function of the feedback rate. Numerical 
results show that when the feedback rate is small, the rate-distortion bound significantly 
outperforms separate vector quantization of each sub-channel vector. For a narrowband 
MIMO channel we have studied the performance of simple (scalar) quantizers, and have 
shown that the degradation relative to optimal (vector) quantizers is relatively small [16]. 

4.3 Adaptive Training for Correlated Channels 
We have previously reported on a model for optimizing pilot and data power over a time-
selective, correlated (first-order Markov) Rayleigh fading channel with feedback, subject 
to an average power constraint. Specifically, the channel is estimated at the receiver with 
a pilot signal, and the estimate is fed back to the transmitter. The estimate is used for 
coherent demodulation, and to adapt the data and pilot powers. More recently, we have 
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been able to explicitly determine the optimal pilot and data power control policies in the 
continuous-time limit where the channel state evolves as an Ornstein-Uhlenbeck 
diffusion process, and is estimated by a Kalman filter at the receiver [20]. We showed 
previously that the optimal pilot policy switches between zero and the maximum (peak-
constrained) value (“bang-bang” control), and approximates the optimal discrete-time 
policy at low Signal-to-Noise Ratios (equivalently, large bandwidths). The switching 
boundary is determined in terms of the system state (estimated channel mean and 
associated error variance). Our more recent results compute this boundary explicitly, and 
show that under the optimal policy, the transmitter conserves power by decreasing the 
training power when the channel is faded, thereby increasing the data rate. Numerical 
results show a significant increase in achievable rate due to the adaptive training scheme 
with feedback, relative to constant (non-adaptive) training, which does not require 
feedback. The gain is more pronounced at relatively low SNRs and with fast fading.  
 

5 Interference Cancellation in Ad Hoc Networks 
Another approach for utilizing multiple antennas in an ad hoc network is to attempt to 
simply cancel the interference to neighboring nodes. Given full channel state information, 
such an approach is sub-optimal, but in a distributed implementation, it avoids the need 
for iteratively updating pre-coding and receiver matrices. In [17] we study the gains of 
such an approach in large random ad hoc networks, using the notion of transmission 
capacity, which is defined as the maximum number of successful communication links 
per unit area given constraints on the received SINR and outage probability. For a 
network of Poisson distributed transmitters with Rayleigh fading, we have characterized 
the scaling of the metric as the outage probability goes to zero. For small outage 
probabilities, transmission capacity increases following a power law, whose exponent 
depends on the inverse of the size of the antenna arrays. This suggests that the use of 
multiple antennas can potentially yield large gains in transmission capacity with only a 
few antennas per node. We have also studied the effect of channel state uncertainty on 
these results. 
 

6 Network Coding 

6.1 Comparison of Analog and Digital Relay Methods 
Adding cooperative relays to a network can help to extend coverage and increase the 
overall throughput. This work was motivated by the possibility of combining simple 
analog relays with power control and linear filtering. We considered wireless 
multicasting from two sources to two destinations with the assistance of a single half-
duplex relay [18]. The objective was to evaluate the throughput and error performance of 
different analog and digital relay schemes with linear network coding at the relay. The 
analog relay node forwards either a scaled version of the received signal to the 
destinations, or alternatively, first filters the received signals to generate a linear 
Minimum Mean Squared Error (MMSE) estimate, which is subsequently forwarded. The 
digital relay scheme first decodes the source transmissions, combines the packets with a 
network code, and forwards the resulting symbols to the destinations. For all schemes the 
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destinations recover the source and relay signals by first applying linear MMSE filters, 
followed by decoding of the source bits.  
 
The performance of the schemes were compared in terms of normalized throughput (bits 
per channel use accounting for the delay due to the relay) and uncoded error probability, 
given a normalized power constraint. Both narrowband and wideband (spread-spectrum) 
transmission schemes were evaluated. Our results show that the analog relay schemes 
outperform the digital network coding scheme with respect to both throughput and error 
probability because of error propagation through the relay (and because the digital relay 
does not perform any intermediate decoding/coding operations other than combining 
packets). Numerical results in [18] illustrate throughput-reliability trade-offs for all 
schemes considered. 

6.2 Training Overhead for Random Network Coding 
For multicast communications linear network coding maximizes the achievable (min-cut) 
rate. A distributed code assignment can be realized by choosing codes randomly at the 
intermediate nodes, but then additional signaling overhead is needed to communicate the 
network coding matrix to each destination. This overhead may be significant for a 
wireless network with unreliable links and varying topology. In [19] we have considered 
a training method for communicating the network coding matrices to the destinations in 
which training bits are appended to data bits at the source. To balance the protection of 
overhead with protection of data, the source can jointly code across both the training and 
information bits. Each destination can then jointly decode the network coding matrix 
along with the data. We have shown how the resulting data throughput depends on the 
network size, channel properties (i.e., error and erasure probabilities), number of 
independent messages, and field size. Using the combination network as an example, we 
have specified conditions under which throughput is limited by training overhead. 
 

7 Technology Transfer 
The PIs have given talks and seminars about this work over the past few years at the 
Army Research Laboratory and at Motorola. Additional discussions with colleagues in 
industry have indicated that interference pricing, based on [1], is being considered as a 
means for mitigating other-cell interference in cellular networks.  
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